This study focus on discovering the signs of vaccine hesitancy based upon the overall population. The area of intereste are the states of Connecticut (CT) and South Dakota (SD). Note that CT has approximately four times in populaton compare to SD.
With the given data, the time series and the daily change distribution of the following aspects were investigated:
Data | Interpretation |
---|---|
times series | time period from 1/22/2020 to 10/22/2021. were used to assess the overall trend and amount. |
distribution of daily changes | calculated by taking the difference between previous day and the next day value. Used to assess the supply and demand corresponding to the distributed and administered dose. The distribution of daily changes count probably follow Poisson distribution or quasi-Poisson distribution, because the daily changes account for the number of events occurring in a fixed interval of time |
import copy
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
%matplotlib notebook
%matplotlib inline
vacc = pd.read_excel('raw data.xlsx', sheet_name='COVID-19_Vaccinations_in_the_Un')
case = pd.read_excel('raw data.xlsx', sheet_name='United_States_COVID-19_Cases_an')
vacc = vacc[(vacc["Location"] == 'CT') | (vacc["Location"] == 'SD')]
vacc=vacc.rename({'Dist_Per_100K': 'Distributed_Per_100K'}, axis=1)
vacc = vacc.rename({'Administered_Dose1_Recip': 'Administered_Dose1_Recip_Yes'}, axis=1)
vacc = vacc.rename({'Administered_Dose1_Pop_Pct': 'Administered_Dose1_Recip_Pop_Pct'}, axis = 1)
print(f'COVID-19_Vaccinations_in_the_Un: \n {vacc.columns}')
print(f'United_States_COVID-19_Cases_an: \n {case.columns}')
COVID-19_Vaccinations_in_the_Un: Index(['Date', 'MMWR_week', 'Location', 'Distributed', 'Distributed_Janssen', 'Distributed_Moderna', 'Distributed_Pfizer', 'Distributed_Unk_Manuf', 'Distributed_Per_100K', 'Distributed_Per_100k_12Plus', 'Distributed_Per_100k_18Plus', 'Distributed_Per_100k_65Plus', 'Administered', 'Administered_12Plus', 'Administered_18Plus', 'Administered_65Plus', 'Administered_Janssen', 'Administered_Moderna', 'Administered_Pfizer', 'Administered_Unk_Manuf', 'Admin_Per_100K', 'Admin_Per_100k_12Plus', 'Admin_Per_100k_18Plus', 'Admin_Per_100k_65Plus', 'Recip_Administered', 'Administered_Dose1_Recip_Yes', 'Administered_Dose1_Recip_Pop_Pct', 'Administered_Dose1_Recip_12Plus', 'Administered_Dose1_Recip_12PlusPop_Pct', 'Administered_Dose1_Recip_18Plus', 'Administered_Dose1_Recip_18PlusPop_Pct', 'Administered_Dose1_Recip_65Plus', 'Administered_Dose1_Recip_65PlusPop_Pct', 'Series_Complete_Yes', 'Series_Complete_Pop_Pct', 'Series_Complete_12Plus', 'Series_Complete_12PlusPop_Pct', 'Series_Complete_18Plus', 'Series_Complete_18PlusPop_Pct', 'Series_Complete_65Plus', 'Series_Complete_65PlusPop_Pct', 'Series_Complete_Janssen', 'Series_Complete_Moderna', 'Series_Complete_Pfizer', 'Series_Complete_Unk_Manuf', 'Series_Complete_Janssen_12Plus', 'Series_Complete_Moderna_12Plus', 'Series_Complete_Pfizer_12Plus', 'Series_Complete_Unk_Manuf_12Plus', 'Series_Complete_Janssen_18Plus', 'Series_Complete_Moderna_18Plus', 'Series_Complete_Pfizer_18Plus', 'Series_Complete_Unk_Manuf_18Plus', 'Series_Complete_Janssen_65Plus', 'Series_Complete_Moderna_65Plus', 'Series_Complete_Pfizer_65Plus', 'Series_Complete_Unk_Manuf_65Plus', 'Additional_Doses', 'Additional_Doses_Vax_Pct', 'Additional_Doses_18Plus', 'Additional_Doses_18Plus_Vax_Pct', 'Additional_Doses_50Plus', 'Additional_Doses_50Plus_Vax_Pct', 'Additional_Doses_65Plus', 'Additional_Doses_65Plus_Vax_Pct', 'Additional_Doses_Moderna', 'Additional_Doses_Pfizer', 'Additional_Doses_Janssen', 'Additional_Doses_Unk_Manuf'], dtype='object') United_States_COVID-19_Cases_an: Index(['submission_date', 'state', 'tot_cases', 'conf_cases', 'prob_cases', 'new_case', 'pnew_case', 'tot_death', 'conf_death', 'prob_death', 'new_death', 'pnew_death', 'created_at', 'consent_cases', 'consent_deaths'], dtype='object')
def replace_leading_ts(ts):
"""
replace the leading zero in times series with nan, in order to be removed
"""
ts.loc[ts.eq(0).cumprod().astype(bool)]= np.float64('nan')
return ts
def diff_bygroup(df, sorting_col_list, date = ['Date']):
"""
calculate the daily change by groups
"""
df2 = df.sort_values(sorting_col_list)
df2['value'] = df2.groupby(sorting_col_list)['value'].transform(lambda x: replace_leading_ts(x))
df2['diffs'] = df2.groupby(sorting_col_list)['value'].transform(lambda x: x.diff(periods=1))
df2 = df2.sort_index()
return df2
-'Distributed', -'Administered'
# data cleaning
Grand_long = pd.melt(vacc, id_vars=['Date', 'Location'],
value_vars=['Distributed', 'Administered'],
ignore_index=False)
Grand_long = Grand_long.rename({'variable': 'Category'}, axis=1)
Grand_long = Grand_long.reset_index(drop=True)
# Visualization
sns.set(font_scale=1)
g = sns.FacetGrid(Grand_long, col = 'Location', size=5,
legend_out=True)
g.map_dataframe(sns.lineplot, x= 'Date', y= 'value', hue = 'Category')
g.fig.subplots_adjust(top=0.8) # adjust the Figure in rp
g.fig.suptitle('Comparison between Categories (Distributed vs Administered): \n Grand comparison of Times series by Locations, measured in Number of vaccine')
g.set_xticklabels(rotation = 30)
g.set_axis_labels("Date", "Number of vaccine")
g.add_legend()
/usr/local/lib/python3.9/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)
<seaborn.axisgrid.FacetGrid at 0x13f300eb0>
# data cleaning
Grand_long_diff = diff_bygroup(df = Grand_long,
sorting_col_list=['Location', 'Category'])
Grand_long_diff = Grand_long_diff.dropna(axis = 0)
# data cleaning
Grand_long_diff = diff_bygroup(df = Grand_long,
sorting_col_list=['Location', 'Category'])
Grand_long_diff = Grand_long_diff.dropna(axis = 0)
# Visualization
sns.set(font_scale=1.5)
g = sns.FacetGrid(Grand_long_diff, col = 'Location', hue = 'Category', size=7,
palette=sns.color_palette('bright')[:3],
legend_out=True)
g.map(sns.histplot, 'diffs')
g.fig.subplots_adjust(top=0.8) # adjust the Figure in rp
g.fig.suptitle('Comparison between Categories (Distributed vs Administered): \n Grand comparison of Daily change by Locations, measured in Number of vaccine')
g.set_axis_labels("Daily change of Number of vaccine", 'Count')
g.add_legend()
g.set(yscale='log')
/usr/local/lib/python3.9/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)
<seaborn.axisgrid.FacetGrid at 0x13fef7fa0>
# two-sample Kolmogorov-Smirnov test for goodness of fit:
# p-value for testing if distribution differ by categoris.
# tests are run for each subplot.
Grand_long_diff.drop(columns=['value']).\
pivot(index=['Date', 'Location'], columns='Category', values='diffs').\
reset_index().\
drop(columns=['Date']).\
groupby(['Location']).\
apply(lambda df: stats.ks_2samp(df.Administered, df.Distributed)[1])
Location CT 3.013765e-12 SD 4.483280e-18 dtype: float64
# data cleaning
Vaccines_long = pd.melt(vacc, id_vars=['Date', 'Location'],
value_vars=['Distributed_Janssen', 'Distributed_Moderna', 'Distributed_Pfizer', 'Distributed_Unk_Manuf',
'Administered_Janssen', 'Administered_Moderna', 'Administered_Pfizer', 'Administered_Unk_Manuf'],
ignore_index=False)
Category_Vaccine = Vaccines_long.variable.str.split('_', n = 1, expand = True)
Category_Vaccine = Category_Vaccine.rename({0: 'Category', 1: 'Vaccine'}, axis=1)
Vaccines_long = pd.concat([Vaccines_long, Category_Vaccine], axis=1)
Vaccines_long = Vaccines_long.reset_index(drop=True)
# Visualization
sns.set(font_scale=2)
g = sns.FacetGrid(Vaccines_long, col='Vaccine', row = 'Location', size = 7,
legend_out=True)
g.map_dataframe(sns.lineplot, x= 'Date', y= 'value', hue = 'Category')
g.fig.subplots_adjust(top=0.85) # adjust the Figure in rp
g.fig.suptitle('Comparison between Categories (Distributed vs Administered): \n Comparison of Time series by Vaccines and Locations, measured in Number of vaccine')
g.set_xticklabels(rotation = 30)
g.set_axis_labels("Date", "Number of vaccine")
g.add_legend()
/usr/local/lib/python3.9/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)
<seaborn.axisgrid.FacetGrid at 0x141204f40>
# data cleaning
Vaccines_long_diff = diff_bygroup(df = Vaccines_long,
sorting_col_list=['Location', 'Category' , 'Vaccine'])
Vaccines_long_diff = Vaccines_long_diff.dropna(axis = 0)
# Visualization
sns.set(font_scale=1.5)
g = sns.FacetGrid(Vaccines_long_diff, col='Vaccine', row = 'Location', hue = 'Category', size =7,
palette=sns.color_palette('bright')[:3],
legend_out=True)
g.map(sns.histplot, 'diffs')
g.fig.subplots_adjust(top=0.85) # adjust the Figure in rp
g.fig.suptitle('Comparison between Categories (Distributed vs Administered): \n Comparison of Daily change by Vaccines and Locations, measured in Number of vaccine')
g.set_axis_labels("Daily change of Number of vaccine", "Count")
g.add_legend()
g.set(yscale='log')
/usr/local/lib/python3.9/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)
<seaborn.axisgrid.FacetGrid at 0x13f3eadf0>
# data cleaning
Age_long = pd.melt(vacc, id_vars=['Date', 'Location'],
value_vars=['Distributed_Per_100K', 'Distributed_Per_100k_12Plus','Distributed_Per_100k_18Plus', 'Distributed_Per_100k_65Plus',
'Admin_Per_100K', 'Admin_Per_100k_12Plus', 'Admin_Per_100k_18Plus', 'Admin_Per_100k_65Plus'],
ignore_index=False)
Category_Per_100K_Age = Age_long.variable.str.split('_', n = 1, expand = True)
Category_Per_100K_Age = Category_Per_100K_Age.rename({0: 'Category', 1: 'Per_100K_Age'}, axis=1)
Age_long = pd.concat([Age_long, Category_Per_100K_Age], axis=1)
Age_long = Age_long.reset_index(drop=True)
# Visualization
sns.set(font_scale=1.5)
g = sns.FacetGrid(Age_long, col='Per_100K_Age', row = 'Location', size = 7,
legend_out=True)
g.map_dataframe(sns.lineplot, x= 'Date', y= 'value', hue = 'Category')
g.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
g.fig.suptitle('Comparison between Categories (Distributed vs Administered): \n Comparison of Time series by Age range and Locations, measured in Number of vaccine')
g.set_xticklabels(rotation = 30)
g.set_axis_labels("Date", "Number of vaccine")
g.add_legend()
/usr/local/lib/python3.9/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)
<seaborn.axisgrid.FacetGrid at 0x1418a2b80>
# data cleaning
Age_long_diff = diff_bygroup(df = Age_long,
sorting_col_list=['Location', 'Category' , 'Per_100K_Age'])
Age_long_diff = Age_long_diff.dropna(axis = 0)
# Visualization
sns.set(font_scale=1.5)
g = sns.FacetGrid(Age_long_diff, col='Per_100K_Age', row = 'Location', hue = 'Category', size = 7,
palette=sns.color_palette('bright')[:3],
legend_out=True)
g.map(sns.histplot, 'diffs')
g.fig.subplots_adjust(top=0.85) # adjust the Figure in rp
g.fig.suptitle('Comparison between Categories (Distributed vs Administered): \n Comparison of Daily change by Age range and Locations, measured in Number of vaccine')
g.set_axis_labels("Daily change of number of vaccine", 'count')
g.add_legend()
g.set(yscale='log')
/usr/local/lib/python3.9/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)
<seaborn.axisgrid.FacetGrid at 0x140ca9520>
'Administered_Dose1_Recip', 'Administered_Dose1_Recip_12Plus', 'Administered_Dose1_Recip_18Plus', 'Administered_Dose1_Recip_65Plus',
'Series_Complete_Yes', 'Series_Complete_12Plus', 'Series_Complete_18Plus', 'Series_Complete_65Plus'
# data cleaning
Dose_long = pd.melt(vacc, id_vars=['Date', 'Location'],
value_vars=['Administered_Dose1_Recip_Yes',
'Administered_Dose1_Recip_12Plus',
'Administered_Dose1_Recip_18Plus',
'Administered_Dose1_Recip_65Plus',
'Series_Complete_Yes',
'Series_Complete_12Plus',
'Series_Complete_18Plus',
'Series_Complete_65Plus'],
ignore_index=False)
Category_Per_100K_Age = Dose_long.variable.str.rsplit('_', n = 1, expand = True)
Category_Per_100K_Age = Category_Per_100K_Age.rename({0: 'Category', 1: 'Age'}, axis=1)
Dose_long = pd.concat([Dose_long, Category_Per_100K_Age], axis=1)
Dose_long = Dose_long.reset_index(drop=True)
# Visualization
sns.set(font_scale=1.5)
g = sns.FacetGrid(Dose_long, col='Age', row = 'Location', size = 7,
legend_out=True)
g.map_dataframe(sns.lineplot, x= 'Date', y= 'value', hue = 'Category')
g.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
g.fig.suptitle('Comparison between Categories (Series_complete vs Administered_Dose1_Recip): \n Comparison of Time series by Age range and Locations, measured in Population')
g.set_xticklabels(rotation = 30)
g.set_axis_labels("Date", "Population")
g.add_legend()
/usr/local/lib/python3.9/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)
<seaborn.axisgrid.FacetGrid at 0x141ca73d0>
# data cleaning
Dose_long_diff = diff_bygroup(df = Dose_long,
sorting_col_list=['Location', 'Category', 'Age'])
Dose_long_diff = Dose_long_diff.dropna(axis = 0)
# Visualization
sns.set(font_scale=1.5)
g = sns.FacetGrid(Dose_long_diff, col='Age', row = 'Location', hue = 'Category', size = 7,
palette=sns.color_palette('bright')[:3],
legend_out=True)
g.map(sns.histplot, 'diffs')
g.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
g.fig.suptitle('Comparison between Categories (Series_complete vs Administered_Dose1_Recip): \n Comparison of Daily change by Age range and Locations, measured in Population')
g.set_axis_labels("Daily change of population", 'count')
g.add_legend()
g.set(yscale='log')
/usr/local/lib/python3.9/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)
<seaborn.axisgrid.FacetGrid at 0x142b01af0>
'Administered_Dose1_Recip_Pop_Pct', 'Administered_Dose1_Recip_12PlusPop_Pct', 'Administered_Dose1_Recip_18PlusPop_Pct', 'Administered_Dose1_Recip_65PlusPop_Pct',
'Series_Complete_Pop_Pct', 'Series_Complete_12PlusPop_Pct', 'Series_Complete_18PlusPop_Pct', 'Series_Complete_65PlusPop_Pct',
# data cleaning
Pop_Pct_Age_long = pd.melt(vacc, id_vars=['Date', 'Location'],
value_vars=['Administered_Dose1_Recip_Pop_Pct',
'Administered_Dose1_Recip_12PlusPop_Pct',
'Administered_Dose1_Recip_18PlusPop_Pct',
'Administered_Dose1_Recip_65PlusPop_Pct',
'Series_Complete_Pop_Pct',
'Series_Complete_12PlusPop_Pct',
'Series_Complete_18PlusPop_Pct',
'Series_Complete_65PlusPop_Pct',],
ignore_index=False)
Pop_Pct_Age_long['Category'] = Pop_Pct_Age_long.variable.str.extract('(^Administered_Dose1_Recip|^Series_Complete)')
Pop_Pct_Age_long['Pop_Pct_Age'] = Pop_Pct_Age_long.variable.str.extract('(Pop_Pct|12PlusPop_Pct|18PlusPop_Pct|65PlusPop_Pct)$')
Pop_Pct_Age_long = Pop_Pct_Age_long.reset_index(drop=True)
# Visualization
sns.set(font_scale=1.5)
g = sns.FacetGrid(Pop_Pct_Age_long, col='Pop_Pct_Age', row = 'Location', size = 7, legend_out=True)
g.map_dataframe(sns.lineplot, x= 'Date', y= 'value', hue = 'Category')
g.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
g.fig.suptitle('Comparison between Categories (Series_complete vs Administered_Dose1_Recip): \n Comparison of Time series by Age range and Locations, measured in Population proportion')
g.set_xticklabels(rotation = 30)
g.set_axis_labels("Date", "Population proportion, %")
g.add_legend()
/usr/local/lib/python3.9/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)
<seaborn.axisgrid.FacetGrid at 0x143c39820>
# data cleaning
Pop_Pct_Age_long_diff = diff_bygroup(df = Pop_Pct_Age_long,
sorting_col_list=['Location', 'Category', 'Pop_Pct_Age'])
Pop_Pct_Age_long_diff = Pop_Pct_Age_long_diff.dropna(axis = 0)
# Visualization
sns.set(font_scale=1.5)
g = sns.FacetGrid(Pop_Pct_Age_long_diff, col='Pop_Pct_Age', row = 'Location', hue = 'Category', size = 7,
palette=sns.color_palette('bright')[:3],
legend_out=True)
g.map(sns.kdeplot, 'diffs')
g.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
g.fig.suptitle('Comparison between Categories (Series_complete vs Administered_Dose1_Recip): \n Comparison of Daily change by Age range and Locations, measured in Population proportion')
g.set_axis_labels("Daily change of Population proportion", "density")
g.add_legend()
/usr/local/lib/python3.9/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)
<seaborn.axisgrid.FacetGrid at 0x144040250>
# Visualization
sns.set(font_scale=1.5)
g = sns.FacetGrid(Pop_Pct_Age_long_diff, col='Pop_Pct_Age', row = 'Location', hue = 'Category', size = 7,
palette=sns.color_palette('bright')[:3],
legend_out=True)
g.map(sns.histplot, 'diffs')
g.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
g.fig.suptitle('Comparison between Categories (Series_complete vs Administered_Dose1_Recip): \n Comparison of Daily change by Age range and Locations, measured in Population proportion')
g.set_axis_labels("Daily change of Population proportion", "Count")
g.add_legend()
# g.set(yscale='log')
/usr/local/lib/python3.9/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)
<seaborn.axisgrid.FacetGrid at 0x13f338250>
'Series_Complete_Janssen', 'Series_Complete_Moderna', 'Series_Complete_Pfizer', 'Series_Complete_Unk_Manuf', 'Series_Complete_Janssen_12Plus', 'Series_Complete_Moderna_12Plus', 'Series_Complete_Pfizer_12Plus', 'Series_Complete_Unk_Manuf_12Plus', 'Series_Complete_Janssen_18Plus', 'Series_Complete_Moderna_18Plus', 'Series_Complete_Pfizer_18Plus', 'Series_Complete_Unk_Manuf_18Plus', 'Series_Complete_Janssen_65Plus', 'Series_Complete_Moderna_65Plus', 'Series_Complete_Pfizer_65Plus', 'Series_Complete_Unk_Manuf_65Plus'
# data cleaning
Series_Complete_long = pd.melt(vacc, id_vars=['Date', 'Location'],
value_vars=['Series_Complete_Janssen',
'Series_Complete_Moderna',
'Series_Complete_Pfizer',
'Series_Complete_Unk_Manuf',
'Series_Complete_Janssen_12Plus',
'Series_Complete_Moderna_12Plus',
'Series_Complete_Pfizer_12Plus',
'Series_Complete_Unk_Manuf_12Plus',
'Series_Complete_Janssen_18Plus',
'Series_Complete_Moderna_18Plus',
'Series_Complete_Pfizer_18Plus',
'Series_Complete_Unk_Manuf_18Plus',
'Series_Complete_Janssen_65Plus',
'Series_Complete_Moderna_65Plus',
'Series_Complete_Pfizer_65Plus',
'Series_Complete_Unk_Manuf_65Plus'],
ignore_index=False)
Series_Complete_long['Category'] = Series_Complete_long.variable.str.extract('(Janssen|Moderna|Pfizer|Unk_Manuf)')
Series_Complete_long['Pop_Pct_Age'] = Series_Complete_long.variable.str.extract('(12Plus|18Plus|65Plus)$')
Series_Complete_long = Series_Complete_long.reset_index(drop=True)
# Visualization
sns.set(font_scale=1.5)
g = sns.FacetGrid(Series_Complete_long, col='Pop_Pct_Age', row = 'Location', size = 7, legend_out=True)
g.map_dataframe(sns.lineplot, x= 'Date', y= 'value', hue = 'Category')
g.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
g.fig.suptitle('Comparison between Vaccines: \n Comparison of Time series by Age range and Locations, measured in Population')
g.set_xticklabels(rotation = 30)
g.set_axis_labels("Date", "Population")
g.add_legend()
/usr/local/lib/python3.9/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)
<seaborn.axisgrid.FacetGrid at 0x146590430>
# data cleaning
Series_Complete_long_diff = diff_bygroup(df = Series_Complete_long,
sorting_col_list=['Location', 'Category', 'Pop_Pct_Age'])
Series_Complete_long_diff = Series_Complete_long_diff.dropna(axis = 0)
# Visualization
sns.set(font_scale=1.5)
g = sns.FacetGrid(Series_Complete_long_diff, col='Pop_Pct_Age', hue = 'Location', row= 'Category', size = 7,
palette=sns.color_palette('bright')[:3],
legend_out=True)
g.map(sns.histplot, 'diffs')
g.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
g.fig.suptitle('Comparison between Vaccines: \n Comparison of Daily Change by Age range and Locations (CT vs SD), measured in Population')
g.set_axis_labels("Daily change in population", "Count")
g.add_legend()
g.set(yscale='log')
/usr/local/lib/python3.9/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)
<seaborn.axisgrid.FacetGrid at 0x14634a130>
Converting to pdf without code:
% jupyter nbconvert --to pdf --TemplateExporter.exclude_input=True database_final_project.ipynb